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The motion of a plane multilink system on a horizontal plane is investigated assuming the existence of dry friction. The motion
occurs, under the action of internal control torques applied at the system’s joints. It is shown that modes of slow (quasi-static)
motion exist in which the system advances along itself owing to a wave travelling along it, in which several links participate. These
modes of motion differ from previously studied fast (dynamical) modes of motion of multilink systems along a plane. © 2000
Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The majority of known modes of motion of living organisms and devices along a surface have the property
that the points of contact of the moving body with the surface do not remain unchanged. Thus, in walking
and running the supporting legs alternate; in the motion of wheeled and caterpillar machines the points
of contact of the wheels and the tracks with the surface change. In this sense, the motion of snakes and
other legless animals, which are in permanent contact with the supporting surface over almost all their
length, is a special case. These motions are maintained by torques perpendicular to the supporting surface
along which the motion occurs. Note that the motion of wheeled and walking devices involves control
torques applied along axes parallel to the supporting surface.

The biomechanics of the motion of living organisms, including snakes, has been investigated in
[1, 2]. Several papers [3-7] have been devoted to the kinematics of multilink devices imitating the motion
of a snake. These mechanisms are non-holonomic systems equipped with wheels.

The motions of a multilink system moving over a rough horizontal plane, under the action of control
torques perpendicular to the plane, applied to the joints of the system, have been constructed and
investigated [8, 9]. It has been shown that by alternating the slow and fast phases of the motion the
system may move along itself, sideways, or rotate on the sport. Sufficient conditions have been established
for these motions to be possible, and the displacements and velocities of the system have been estimated.

In this paper too, we will consider the motion of a multilink system along a rough horizontal plane.
It will be shown that forward motion of the system can occur, remaining within the framework of slow
(quasi-static) motions, without requiring the application of the large control torques necessary for the
fast phases of the motion. Two types of slow motion, of a wavelike nature, are constructed. In one of
them, three links of the system are involved at each instant of time; in the other, four are involved. The
forces and moments for these motions are computed.

2. THE MECHANICAL MODEL

Consider a multilink system consisting of NV identical links, assumed to be absolutely rigid straight rods
of length a. For simplicity, we will assume that the masses of the links are negligibly small compared
with those of the joints, each of which is a point mass m. The end points of the system have the same
mass m. The system is lying on a stationary rough horizontal plane, attached to which is a rectangular
Cartesian system coordinates Oxyz. The Ox and Oy axes lie in the plane and the Oz axis points vertically
upwards.

At each joint P; (i = 1, ..., N-1) internal control torques may act directed along the Oz axis. We let
M; denote the torque exerted by the link P.1P; on the link P,P;,; then the torque exerted by P;P;,; on
P,_P;willbe -M; (i =1, ..., N-1).
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Between each point P; and the Oxy plane a dry friction force F; acts in the plane. By Coulomb’s law,
we have

l?,' =—mgkU,~_‘V,-, v; #0
|F, |= mgk, v; =0, i=0,1,..,N-1

2.1)

where v; is the velocity vector of P;, v; is the magnitude of the latter, g is the acceleration due to gravity
and, k is the constant coefficient of fraction. At rest (v; = 0) the friction force may have an arbitrary
direction.

Let R; denote the force exerted by the link P,_iP; on the point P;. We will write down equilibrium
conditions for the rigid body consisting of the point P; and the weightless link P;P;, (see Fig. 1). The
forces acting on this body are: the friction force F;, the force R; exerted by the link P;_P,, the force -R
exerted by the point P, , and also the torques M; and -M; ,; exerted by the adjacent links. The equations
of equilibrium of the body have the form

F,+R;-R;,; =0
M‘- “'M"+| +l',-_,v+| X(—Ri+|)= O, i= 1,...,N_2 (2.2)

Throughout, r;; denotes a vector P,P; between the relevant point, i, j = 0, 1, ..., N. Equations (2.2)
hold for all the links except the end ones. For the end links.

FO_RI=0' —M|+ro'|x('—R|)=0
Fy.1+Ry Ry =0, My +ry_yX(-Ry)=0 (2.3)

Fy+Ry =0

The last equation of (2.3) is the equilibrium condition for the point Py,

In what follows we will construct wavelike slow motions of a multilink system in which it moves along
itself under quasi-static conditions. In other words, the velocities and accelerations are assumed to be
sufficiently small in magnitude, so that at each instant of time the equilibrium conditions (2.2.) and
(2.3) hold to a high degree of accuracy. We will first describe the kinematics of wavelike motions involving
three or four moving links, then prove that these motions exist in reality and finally compute the forces
and torques.

Let us assume that at the starting time the multilink system is aligned along the axis with the points
P; at coordinates x; = ai,y; = 0 (i = 0, 1, ..., N). In that case all the friction forces F; (i =0, 1, ..., N),
reactive forcesR; (i = 1,2, ..., N) and torques M; (i = 1, ..., N) are zero.

The initial state of the system is illustrated by state a in Figs 2 and 3. In these and the following figures
the points P; (i = 0, 1, ..., N) are labelled by digits.

3. WAVELIKE MOTION WITH THREE MOVING LINKS

First the point P, advances along the x axis and the points P;, i = 2, remain fixed. The angle a between
the x axis and link PyP; (see state b in Fig. 2) varies monotonically from zero to a certain given value
oy. At this initial stage, the motion involves two links P3P, and P,P,, which form an isosceles triangle.
At the end of this stage the angle at the base of this triangle will be o (see state c in Fig. 2). All points
except Pj lie on the x axis.

At the next stage the moving links are PyP;P, and P,P;. The points Py and P;, i = 3; remain stationary,

Fig. 1.
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Fig. 2. Fig. 3.

and the angle o varies monotonically from oy to zero. At the same time the angle 8 between link P,P;
and the x axis varies monotonically from zero to o (see state d in Fig. 2). At the end of this stage the
system will be in staté e, in which links PP, and P,P; form an isosceles triangle congruent to the triangle
PyP1P, in state ¢ but with its apex pointing in the other direction. Here all points except P, lie on the
x axis.

Next, the motion will involve links P,P,, P,P; and P3P,, and this motion, apart from a displacement
along the x axis and a mirror reflection in the axis, will be identical with the preceding stage, namely,
with the transition from state c to state e. As a result, the point P, will return to the x axis, while links
P,P; and P,P, form an isosceles triangle congruent with the triangle PyP;P; in state c, a distance 2a
farther to the right along the x axis.

Continuing this process, we see that after each stage is completed all points of the system except one
will lie on the x axis, and that one point will be the apex of an isosceles triangle with angle ¢ at the
base. The apex, together with the whole triangle, gradually moves towards the right: it will be the points
P,, Py, P, etc. in turn. Finally, the point Py_; will become the apex of such a triangle, while the points
P, 0 =i =< N-2, and Py will lie on the x axis (see state f in Fig. 2). The apex of the triangle
Py Py 1Py, namely, Py_;, will lie on the same side of the x axis as the triangle PyP,P, in state ¢ if N is
even (as in Fig. 2), and on the opposite side if NV is odd.

In both cases, in the last stage of the motion the point Py advances to the right along the x axis. The
angle o at the base of the triangle Py_,Py_1Py varies monotonically from o, to zero and the multilink
system will take up a “straight-line” stage g.

In consequence of the entire cycle of movements, the system will advance along the x axis for a distance
L equal to the displacement of the point P, from state a to state c in Fig. 2. We have

L = 2a(1-cos o) (3.1)

4. WAVELIKE MOTION WITH FOUR MOVING LINKS

The first stage of the motion proceeds exactly as in the previous case, and the multilink system goes
from state a through an intermediate state b to state ¢ in Fig. 3, which is identical with state ¢ in

Fig. 2.
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At the next stage of the motion, links PyP;, P\P,, P,P; and P3P, are involved. The point P, moves to
the right along the x axis. As this happens the angle o at the base of the isosceles triangle PyP,P, varies
monotonically from o to zero, while the angle B at the base of the isosceles triangle P,P3P,
varies monotonically from zero to o (see state d in Fig. 3). The apex P; of the latter triangle lies on
the side of the x axis apposite to that of P;. At the end of this stage, all points of the system except P;
will lie on the x axis; P3 will be the apex of an isosceles triangle with angle o at the base (see state e in
Fig. 3).

Now links P,P;, P3P,, P,Ps and P;sPg take part in the motion. The motion is analogous to that in the
preceding state, but displaced along the x axis and reflected in that axis. The result is an isosceles triangle
with apex P; and angle oy at the base.

Continuing the process, we see that the apices of the triangles at the end of each stage are the points
with odd indices. Therefore, if N is even, the system will finally reach a state f analogous to state f in
Fig. 2. In that case, if N/2 is odd, the apex Py_; of the triangle Py_,Py_1Py will point in the same direction
as the apex P, of the triangle PyP,P; in the initial stage (see Fig. 3, f); if N/2 is even, it will point in the
opposite direction. In both cases, in the last stage the point Py will move to the right along the x axis
until the entire system takes up the straight position g shown in Fig. 3.

On the other hand, if N is odd, one obtains situation # of Fig. 3. All points except Py_, will lie on the
x axis, and Py_; will be the apex of an isosceles triangle with angle o at the base. This vertex will point
in the same direction as the apex P, of the triangle PyPP; in state ¢ if (N~ 1)/2 is odd (this is the case
shown in Fig. 3), and in the opposite direction if (N - 1)/2 is even. In both cases, the last stage is that
the points Py_; and Py will move to the right along the x-axis, until the system takes up the straight
position i shown in Fig. 3.

The total advance of the system along the x axis through the whole cycle is determined by the same
relation (3.1) as in the previous case.

5. THE QUASI-STATIC APPROACH

As already pointed out, we are considering motions of a multilink system in a quasi-static formulation,
with velocities and accelerations assumed to be extremely small. In this formulation all external forces
applied to the system must almost balance out. Such external forces acting in the plane of the motion
are friction forces. In a first approximation, therefore, we must require the friction forces to satisfy three
equilibrium conditions (two for the forces and one for the moments). The friction forces applied to
the moving points are readily evaluated if we know the directions of the velocities (see (2.1)). For points
at rest, however, the friction forces are unknown, but they are bounded by inequalities. The system is
statically indeterminate if the number of unknown components of the friction forces exceeds three.
Consequently, the equilibrium problem need not necessarily have a unique solution.

We will try to find the simplest distributions of the friction forces for which equilibrium is attained
with the participation of the least possible number of stationary points adjacent to the moving points.
Points P; at which the friction force is not zero will be called active. We are thus looking for a solution
of the problem of statics with the least possible number of active points adjacent to moving points.

As follows from the description of the wavelike motions of the system, these motions consist of the
following distinct stages.

A. The initial stage, that is, transition from state a to state ¢ through an intermediate state b as in
Figs 2 and 3.

B. The final stage, that is, transition from state e to state g in Figs 2 and 3; this stage is similar to the
initial stage; it always takes place in motion with three moving links, and if N is even — also in motion
with four moving links.

C. The final stage in motion with four moving links in the case of odd N, corresponding to transition
from state 4 to state i in Fig. 3.

D. The basic stage of motion with three moving links, characterized by state 4 in Fig. 2.

E. The basic stage of motion with four moving links, characterized by state d in Fig. 3.

We will now consider equilibrium conditions for each of stages A-E.

6. THE INITIAL STAGE

Consider the intermediate state b of initial stage A of the motion (Figs 2 and 3). The coordinates of
the moving points Py and P are, respectively
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xp=2a-2acosa, y,=0

(6.1)
=2a-acosC, y;=asina
and their velocities have components
Xg =2adsing, y,=0
x; =adsing, y =adcoso (6.2)

To fix our ideas, let us assume that o e (0, 7/2), and then & > 0. The friction forces acting at the points
P, and P, are defined by (2.1) in which the velocities are substituted from (6.2). We have

Fy =—-mgki, F, =-mgk(sin i+ cos ) (6.3)

Henceforth, we will let i and j denote unit vectors along the coordinate axes Ox and Oy, respectively.
The projections of the friction forces F; onto the axes Ox and Oy will be denoted by Xi and Y7, respectively.

Let us assume that the active points, that is, those with non-zero friction forces, are P, i < 5. We set
up the equilibrium equations for the system, considering these points only and taking relations (6.3)
into account:

X, + X3+ X4+ X5 = mgk(1 +sinat) (6.4)
L+Y;,+Y, + Y, =mgkcosa (6.5)
l'2_| XF. +ai><F3 +2aiXF4 +3aiXF5=0 (6.6)

Equation (6.6) is the equation of moments about the point P,. Substituting the components (—a cos
o, a sin o of the vector r,,; and the force F, from (6.3) into this equation, we obtain

Y3+2Y,+3Ys=—mgk 6.7

In order to satisfy the equilibrium conditions we have to find a solution of system (6.4), (6.5), (6.7)
satisfying conditions (2.1):

X+yt= (mgk)? (6.8)
In what follows it will be convenient to normalize all the components of the friction forces. We set
X;=mgkE;, Y, =mgkn, i=0,...N (69)

Then the restrictions of Coulomb’s law (2.1) (or (6.8)) become

E2+ni<1, i=01...N (6.10)

The equilibrium equations (6.4), (6.5) and (6.7) may now be rewritten in the form

E,+E3+E +Es=1+sina
Mz +M3 +MNg+Ms=CosSQ (6.11)
N3 +2N4 +3ns=-1

We will first try to satisfy Eqs (6.11) with two fixed active points P; and P, setting § = my = & =
ms = 0. Then the third equatlon of (6. 11) yields n; = -1. Consequently, by (6.10), & = 0 The first
equation of (6.11) then gives & = 1 + sin «, which violates condition (6.10).

Thus, two fixed active points are not sufficient, and the point P, must also be active. Put

& = ms = 0. Multiply the second equation of (6.11) by two and subtract the third equation of (6.11)
from the result. We obtain

2Ny +tnz=142cosa (6.12)



502 E L. Chernous’ko

At the beginning of the initial stage we have oo = 0, and Eq. (6.12) gives 2n; + m3 = 3. It follows
from inequalities (6.10) that m; = m3 = 1. Substituting n; = 1 and n5 = 0 into the third equation, we
obtain m, = -1. Thus, for i = 2, 3, 4 we have | n, | = 1 and, by (6.10), & = 0. Hence the first equation
of (6.11) is not satisfied when &; = 0.

Consequently, all four points P,, P3, P4, Ps must be active. The two possible solutions of Egs (6.11)
and inequalities (6.10) are

E,=8,=0, & =sina, & =1 (6.13)
N, =-Ng =(1+cosa)/2, My=cosa, Ns=0

E,=8s=)4, E&3+E=(sin)/2 (6.14)
N, =% +(cosa)/2, my=cosa, mM,=-—(cosa)/2, T =-4

A direct check will show that both solutions (6.13) and (6.14) satisfy Eqs (6.11) and inequalities (6.10).
In actual fact, for (6.13) some of the inequalities become equalities, but for (6.14) all the inequalities
(6.10) hold “with room to spare”.

7. THE FINAL STAGES

The final stage B, characterized by the transition from state f to state g in Figs 2 and 3, is essentially
the initial stage in retrograde time. The points Py_; of stage B should be identified with the points P;
instage 4 (i = 0, 1, 2, 3, 4, 5). The sign of the angular velocity « is reversed, and the point Py of stage
B, like P, in stage A, advances along the x axis. As a result it turns out that the x-components of all
three friction forces have the same signs as before, but the y-components change sign. We have the
following correspondence of forces for stages B and A

Xni=Xis Yyi=-¥, i=0,1,2,3,4,5 (7.1)

The proof of the previous section that four fixed points must be active, and the derivation of the
solution (6.13), (6.14), remain valid, provided one takes the notation (7.1) and (6.9) into account.

‘We now consider the final stage C, which takes place in the case of four moving points when (N-1)/2
is even (situation 4 in Fig. 3). At this stage (see Fig. 4) the points P;, i < N-3, remain stationary, while
Py, and Py move along the x axis. We place the origin at the point Py_s, direct the x axis along the link
Py_4Pn_3 and write down the coordinates and velocities of the moving points

Xn_p =@COSQ, Yy_, =asinQ, xy_; =2acosq
yno1 =0, xy=2acosa+a, yy=0
Xy_2 =—aQSIN0, Yy_o =accosc (7.2)
Xy_| =Xy =-2adsind, yy_;=yy=0
where o is the angle at the base of the isosceles triangle Py_3Pn_sPn_1, & < 0.

Using Eq (2.1) and relations (7.2), we proceed as was done for (6.3) to evaluate the friction forces
acting on the moving points

Fy_, =mgk(-sinai+cosaj), Fy_, =Fy =-mgki (7.3)
N-2
a
N-6 N-5 N4 N3 N-1 N

Fig. 4.
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The equilibrium equations considering the points from Py_¢ to Py, are
Xy_6+Xy_s+Xy_q4+Xy_3=mgk(2+sine)
Yy +Yy_s+Yy_s+Yy_ 3 =—mgkcosa (7.4)
—3aixFy_¢-2aixFy_s—aixFy_s+ry_ 3y o XFy_o +
+ry_a N1 XFy  +ry_ 3 v XFy =0

In the equation of moments (7.4) about the point Py_; we substitute the friction forces (7.3) and the

coordinates of the points Py_p, Py_;, Py from (7.2). As a consequence, taking the normalization (6.9)
into account, the system of equilibrium equations (7.4) becomes

En-6+En_s+En_s +EN_3=2+sin0
NMn-6 t Ny-s +Ny-g4 +My_3 =—Cos® (7.5)
Muyce +2Ny_s +My-g =1

Let us assume that, in all, there are three active fixed points, Py_s, Py and Py_s, so that
{n-s = mn-¢ = 0. Multiply the second equation of (7.5) by two and subtract the third equation of (7.5)
from the result. This gives

T]N_4 + 21]"_3 = "2 cosOL ~ l (7.6)

If a = 0, it follows from (7.6) that ny_4 + 2my_3 = -3, but since | m; |< 1 for all i, it follows that
NN = Ma-3 = -1. By (6.10), we have &y_4 = Ev_; = 0. Then the first equation of (7.5), given that
Env¢ = 0, a = 0, becomes &y_s = 2, and inequality (6.10) is not satisfied for i = N - 5. Consequently,
three active fixed points are insufficient, and the point Py_g is also active.

One possible solution of Eqs (7.5), also satisfying inequalities (6.10) (with “room to spare”), is the
following

Ene =% En_s=(4+sina)/6, Ey_, =(5sina)/6

Env-a=Ys Myg =Y. My_s=(cosa)/2
NMy-g =—C0sQ, TMy_3=—2+3cosa)/6

8. THE BASIC STAGE FOR THREE MOVING LINKS

This stage (stage D in Section 6) is characterized by state d in Fig. 2. The general case of this stage is
illustrated in Fig. 5, where the moving links are P,P;,,, P;y1P;y, and P, ,P;,3. We place the origin at
the stationary point P;, direct the x axis along the segment PP, ; and write down the coordinates of
the moving points P;,, and P;,
Xj, =acosd, Yy, =asina 8.1)
X4z =l -acosP, y,,=-asinf
where o and B are the angles between the x axis and the moving links P.P;,; and P;,,P;,, measured
in opposite directions (see Fig. 5), and / is the distance P;P;, 3, which remains unchanged throughout

this stage.
Differentiating relations (8.1), we determine the velocities of the points P;,; and P;,,

X = —adsing, Yiel = adl.cos O (82)
Xiy2 =aPsinB, y;,, =-aBcosp
i+
izt g i+3 i+4

i+2
Fig. 5.
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Throughout this stage we have a. < 0, [3 > 0. The friction forces acting on the moving points P, ; and
P; ., are determined using relations (2.1) and formulae (8.2). We obtain

F;,; = mgk(-sinai + cos aj) 8.3)

H

F,,, = mgk(-sinBi+ cosBj)

We set up the equilibrium equations, assuming that there are just two active stationary points on
each side of the moving links, that is, the active points are P, i -1 < j < i + 4 (see Fig. 5). Using
Eqgs (8.3), we have

Xi-] + X‘- + Xi+3 + X,-+4 = mgk(sina+sin B)
Y, +Y +Y,3+Y, 4 = —mgk(cosc +cosP) (8.4)
—a¥_ + g+ +a)f, =

cosot  sino

=-mg

- o
. acosP asmB'

—sinp cosfB

—Sin0.  cos Ol

The last equation of (8.4) is the equation of moments about the point P, obtained using (8.1) and
(8.3). After simplifying and changing to the dimensionless variables (6.9), Egs (8.4) become

Eiy +8; +&;,3+8;,q =sina+sinf (8.5)
Mi_y + N + Nixz +MNjsg = ~(cos 0 +cosP)
—an;_y + M3+ + a4 = -lcosP
System (8.5) has a solution
Gict =8ivg =Misy =My =0 (8.6)
£, =sina, &;,3=sinP, m; =—cosq, M;;=-cosP

which also satisfies inequalities (6.10). This solution is interesting because it involves only two active
stationary points P; and P;, 3, which are the ends of the moving links.

9. THE BASIC STAGE FOR FOUR MOVING LINKS

This stage (stage E in Section 6) is characterized by state d in Fig. 3. The general case of this stage is
illustrated in Fig. 6, where the moving links are PP, q, P; Py, Piy2P143 and Py 3P; 4. We place the
origin at the stationary point P; and direct the x axis along the segment P;P; 4. Let o and B denote the
angles at the bases of the isosceles triangles PiP;, 1P; ., and P, ,P; 1P, .4, respectively. The coordinates
of the moving points are

X;,) =acosd, Y, =asin®, x;,=2acoso (9.1)
Viea =0, x;,3 =a(2cosa+cosP), y;.;=-asinp
and their velocities are
X;y =—a0sing, y;,, =atcose, X, =-2adsinc 9.2)
Yie2 =0, X;,3 =-a(2asino.+ Bsin B), Jiaa= —aPcosp

Throughout the motion, the distance P./P;,4 remains unchanged and is equal to its value at the
beginning and at the end of the step, when one of the angles a or B is zero and the other has its maximum
value o, We therefore have

cose + cosP = 1 + cosoy 9.3)
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Differentiating this identity, we obtain
dasino+PsinB=0 (9.4)
In view of (9.4), we deduce from (9.2) that

X3 = aPsinp (9.5)

Taking into account that o < 0, [3 > 0, we use relations (2.1), (9.2) and (9.5) to determine the friction
forces acting on the moving points

F,,, = mgk(-sinai+cosqj), F;,,=-mgki (9.6)

F,,; = mgk(-sinBi + cosfj)

i

We set up the equilibrium equations of the multilink system, assuming that on each side of the moving
links there are just two stationary points, that is, the active points are P, i —1 <j < i + 5 (see Fig. 6).
Taking Eqgs (9.6) into account, we obtain

X1+ X;+ X; 4 + X; 5 = mgk(1 +sina +sin )
Y1 +Y + Y4+ Y5 = —mgk(cosa+cosP) 9.7)
-aY,_, +2a(cosa+cosP)Y, 4 +a(2coso+2cosB+1)Y, s =

2coso+cosPp —sinf
—sinf cosf

cosx  sino

= —mgka

—-sint cosOt

The last equation of (9.7) is the equation of moments about the point P;, derived using (9.1) and (9.6).
We simplify Eqgs (9.7), using identity (9.3) and changing to dimensionless variables (6.9). We obtain

Gint 8 +8i 4 +&; s =1+sina+sinp
Nict +M; + Mg + M5 = ~(cos O+ cosP) (9.8)
~Mi_y +2(1 + cos 0 IN; 44 + 3+ 2050 IN;, 5 = —2cosP(1 +costy)

As in Section 8, we will first try to limit ourselves to two active stationary points and put §_; = n,;
= &5 = M;4+5 = 0. It then follows from the third equation of (9.8) that m;,, = —cos 8, and it then follows
from the second equation of (9.8) that m; = —cos o. It now follows from inequality (6.10) that
|& = sina, |§44] < sin B. These inequalities contradict the first equation of (9.8) for §_; = §&,5 = 0.
Thus, two active stationary points are insufficient.

It turns out that if at least one of the points P;,; or P;,s is also active, a solution exists. Set

i =sino, m;=-cosa, &, 4 =sinB, mM;4=-cosp
9.9
Nict =Mias =0
and, in addition,
either§ ;= 1, &,5=00r§ 1 =0,§,5=1 (9.10)

It can be readily verified that both solutions (9.9) and (9.10) satisfy Eqgs (9.8) and inequalities (6.10).
Thus, in this case there must be three active stationary points: P, P;, 4 and either P;_; or P; ;.

10. DETERMINATION THE TORQUES

At any stage of the wavelike motion with three or four moving links, there is a certain finite number
of active points. Let P, be the outermost active point on the left and P, the outermost one on the right,
g<r.Wehave F; # 0forg<i=<rF;, =0fori < gandi > r. At the outermost active points we have

R,=0, M,=0; R, =0, M, =0 (10.1)
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Conditions (10.1) mean that there is no force acting on the point P, and the link P,P,_; from the left,
and none acting on P, and P,_P, from the right.

In Section 2, the forces R; are defined for 1 < i < N and the torques M; for 1 < i < N-1; this implies
that relations (10.1) are meaningful only for 0 < ¢ < r < N-1. We extend these definitions toi = 0, N,
N+1, in accordance with their meanings (see Section 2), as follows:

Ry=Ryn;1 =0, My=My=My, =0

Then, as is easily seen, Eqs (10.1) and the subsequent formulae of Section 10 will hold for all ¢, r such
that0sg <r<N.

If the multilink system is in equilibrium or in quasi-static motion, each pair of conditions in (10.1)
implies the other pair. Indeed, by (2.2), we have

Rr+l=Fr+Rr=Fr+Fr-l+Rr—l- —2 F+R (102)
=q

In the equilibrium state, all the friction forces on active points are balanced out; hence it follows from
(10.2) that the equalities R, = 0 and R,,; = 0 are equivalent to each other.
Let us compute the torque applied at the i-th joint. Applying Eqs (2.2), we obtain a chain of relations

M, =M, +5,  xF_ +R_)=r,  XF_ + M, +1,_, , X(F_, +R,_,)+

X E+R ) =r,  XF_ +r, ; XF,_,+M,_, +r,, , XR, , =

il
=...=jz r;ixF;+M, +r xR, (10.3)
=q
Since R, = 0, M, = 0, we derive from (10.3) a formula for the torque at the ith joint
M;=3 r;xF;, gsisr+l (10.4)

Putting i = r + 1 in (10.4), and allowing for the fact that the total torque of the friction forces applied
to the system at all active points is zero, we obtain M, = 0.

Thus, if one pair of conditions (10.1) is satisfied, so is the other.

Formula (10.4) enables us to estimate the torque that must be developed by motors mounted at the
joints of the multilink system. Using the solutions for the friction forces obtained in Sections 6-9, we
use formula (10.4) to evaluate the torques at the joints for all active points at stages A~E of the motion.
It turns out that in all cases, and for all values of the angle o,

IMJ < 2mgka (10.5)

The torques M; at the joints, as calculated in this section, guarantee equilibrium of the system in every
position. In order to create the desired quasi-static motion according to the scheme of Sections 3 and
4, one has to specify the torques in the form

M; =M, + AM; (10.6)

The torques Mi were determined above, and the additional small torques AM; must be formed in accordance
with the feedback principle. To that end, the desired law of motion should first be stlpulated e.g. by spec1fy1ng the
generalized coordinates of the system as functions of time: g, = g (f) (k = 1, ..., N + 2). The functions g1
should be such that, as ¢ varies from zero to T, the system successively passes through the states described in Sections
3 and 4. Throughout, the velocities and accelerations must be sufficiently small, so that the inertial forces produced
are much smaller than the friction forces. This condition is expressed by the inequalities

(@)%a <gk, Ga<gk

The additional torques AM; should be specified, e.g. as feedback

N+2
AM; = Z (Wilgx - g 01+ Wi g, - 401} (10.7)
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where the matrices Wy, and W must be chosen so that any motion thus realized is stable. The generalized
coordinates and velocities gy, g, should be measured by sensors. It seems that the desired motion may be followed
in this way to within a given accuracy. However, this problem requires further investigation.

We merely remark that the additional torques AM; can be made very small compared with M; by a proper choice
of the slow quasi-static motion g2(t). Formulae (10.4) and estimates (10.5), therefore, determine the principal part
of the required torques developed by the motors.

11. DISCUSSION OF THE RESULTS

As shown in Sections 6 and 7, at the initial and final stages A—C of wavelike motion there must be at
least four active stationary points; at stage D there must be at least two, and at stage E, at least three.
Hence wavelike motion of a multilink system with three moving links is feasible in practice if it has at
least six points or five links (N = 5). To produce wavelike motion with four moving links, the system
must have at least seven points (six links, N = 6). Motion with three moving links is simpler but, as
shown below, requires that the angles at which the links are inclined to the x axis be large.

Let us estimate the maximum angles of inclination of the links to the x axis in motion with three and with four
moving links, for the same total displacement L of the system. Since formula (3.1) holds for both types of motion,
the value of o for the same L will be the same in both types of motion. The angle at which the links are inclined
to the x axis in the case of four moving links will not exceed 0.

Let us determine the maximum angle of inclination of the links to the x axis in the case of motion with three
moving links. It can be seen from Fig. 5 that the largest angle of inclination to the x axis is that of the middle link
P;.1P; ., of the three moving ones. Letting vy denote the angle between this link and the x axis, we have (see Fig.
5).

a(coso+cosP +cosy) = =a+2acosa (11.1)

The second equality of (11.1) corresponds to the case in which & = 0 or B = 0 in Fig. 5. The largest inclination
of the link P;,1P;,, corresponds to the least value of cos vy or, by (11.1), the maximum value of the sum cos a +
cos B. Using Eqs (8.1), we can write down the condition for the length of the link P;,P;,; to be equal to a. We
have

[{ - a(coso +cosB))? +a’(sina+sinB)? = a? (11.2)
After simplifying, we obtain from (11.2)
I(cosc +cosP) —acos(ot-B) = (1 +a*)(2a)™! (11.3)
‘We now determine the conditional extremum of cos o + cos B, given (11.3). We construct the Lagrange function
G = cos 0 +cos B + Al(cos 0. + cosB) ~ Aacos(c - B) (11.4)
where \ is a Lagrange multiplier, and equate the partial derivatives dG/do and dG/dB to zero. We have

—(}+A)sina + Aasin(a-8)=0

~(1+M)sinB - Aasin(a-B)=0 (11.5)

Adding these equations together, we obtain

(sina+sinB)(1+A)=0 (11.6)
Since the angles o and B are in the interval [0, &), where o < 7/2, and they cannot both vanish, it follows from
(11.6) that 1 + M = 0. We then deduce from (11.5) that o = . Substituting this condition into (11.3) and replacing
1 by its value according to (11.1), we obtain

cosat = cosP = (1 +cosag +cos? o) (1 +2cosg) ™! (11.7)

It can be easily verified that this extremum corresponds to the desired maximum value of cos & + cos § and
lies in the interval (0, ay).
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The corresponding minimum value of cos v is found from (11.1)
cosY = (2¢os0g +2cos> ag - 1)(1+2cosog) ™! (11.8)

This following conclusions may be drawn from formulae (11.7) and (11.8). It is always true that cos y < cos o,
that is, the angle of inclination in the case of three moving links is larger than in the case of four moving links. If
oy > 69° that is, cos oy < (312-1)/2, than cos y < 0, that is, the angle of inclination of the link P;,P;,, exceeds
w/2. Also if oy — 0/2, then vy — w. Thus, in the case of three moving links the multilink system is more strongly
bent, especially at large values of o.

If the number of links N is sufficiently large, there may be several waves of the above types propagating
along the system at the same time. When the first of the waves with three or four moving links has
advanced far enough along system, a new wave of the same or of another type may begin at the end of
the system (i = 0, 1, 2), advancing along the system after the first. Thus, the average velocity of
displacement of the system as a whole may be increased several fold.

To conclude, we note that, simple the modes of motion of a multilink system described previously
[8, 9], where implementation of the fast phases of motion required torques considerably exceeding the
moments mgka of the friction forces, the conditions imposed on the torques here are more moderate.
They are expressed by inequality (10.5).

Thus research was supported financially by the Russian Foundation for Basic Research (99-01-00258).
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