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THE WAVELIKE MOTION OF A MULTILINK SYSTEM 
ON A HORIZONTAL PLANEt 

E L. C H E R N O U S ' K O  

Moscow 

(Rece&ed 9 November 1999) 

The motion of a plane multilink system on a horizontal plane is investigated assuming the existence of dry friction. The motion 
occurs, under the action of internal control torques applied at the system's joints. It is shown that modes of slow (quasi-static) 
motion exist in which the system advances along itself owing to a wave travelling along it, in which several links participate. These 
modes of motion differ :from previously studied fast (dynamical) modes of motion of multilink systems along a plane. © 2000 
Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

The majority of known modes of motion of living organisms and devices along a surface have the property 
that the points of contact of the moving body with the surface do not remain unchanged. Thus, in walking 
and running the supporting legs alternate; in the motion of wheeled and caterpillar machines the points 
of contact of the wheels and the tracks with the surface change. In this sense, the motion of snakes and 
other legless animals, which are in permanent contact with the supporting surface over almost all their 
length, is a special case. These motions are maintained by torques perpendicular to the supporting surface 
along which the motion occurs. Note that the motion of wheeled and walking devices involves control 
torques applied along axes parallel to the supporting surface. 

The biomechanics of the motion of living organisms, including snakes, has been investigated in 
[1, 2]. Several papers [3-7] have been devoted to the kinematics of multilink devices imitating the motion 
of a snake. These raechanisms are non-holonomic systems equipped with wheels. 

The motions of a multilink system moving over a rough horizontal plane, under the action of control 
torques perpendicular to the plane, applied to the joints of the system, have been constructed and 
investigated [8, 9]. It has been shown that by alternating the slow and fast phases of the motion the 
system may move along itself, sideways, or rotate on the sport. Sufficient conditions have been established 
for these motions to be possible, and the displacements and velocities of the system have been estimated. 

In this paper too,, we will consider the motion of a multilink system along a rough horizontal plane. 
It will be shown that forward motion of the system can occur, remaining within the framework of slow 
(quasi-static) motions, without requiring the application of the large control torques necessary for the 
fast phases of the motion. Two types of slow motion, of a wavelike nature, are constructed. In one of 
them, three links of the system are involved at each instant of time; in the other, four are involved. The 
forces and moments for these motions are computed. 

2. THE M E C H A N I C A L  MODEL 

Consider a multilink system consisting of N identical links, assumed to be absolutely rigid straight rods 
of length a. For simplicity, we will assume that the masses of the links are negligibly small compared 
with those of the joints, each of which is a point mass rn. The end points of the system have the same 
mass m. The system is lying on a stationary rough horizontal plane, attached to which is a rectangular 
Cartesian system coordinates Oxyz. The Ox and Oy axes lie in the plane and the Oz axis points vertically 
upwards. 

At each joint Pi (i = 1, . . . ,  N- l )  internal control torques may act directed along the Oz axis. We let 
M i denote the torque exerted by the link Pi.tP i o n  the link P'tei+l;  then the torque exerted by P~i+l o n  

Pi_lPi will be - M  i (i = 1, . . . ,  N-l) .  
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Between each point Pi and the Oxy plane a dry friction force Fi acts in the plane. By Coulomb's law, 
we have 

F i =-mgkvTtv i ,  v i 4 0  (2.1) 

IF i I<~ mgk, v i =0, i=0,1 ..... N - I  

where vi is the velocity vector of Pi, ui is the magnitude of the latter, g is the acceleration due to gravity 
and, k is the constant coefficient of fraction. At rest (ui = 0) the friction force may have an arbitrary 
direction. 

Let R,. denote the force exerted by the link Pi-lPi on the point Pi. We will write down equilibrium 
conditions for the rigid body consisting of the point Pi and the weightless link PiPi+l (see Fig. 1). The 
forces acting on this body are: the friction force Fi, the force R/exerted by the link Pi-lPi, the force -R  
exerted by the point Pi+1, and also the torques Mi and -Mi+I exerted by the adjacent links. The equations 
of equilibrium of the body have the form 

F i + R  i -Ri+!  =0 

M i -Mi+ I +ri.i+ I x( -Ri+I)=0,  i=1 ..... N - 2  (2.2) 

Throughout, ri, j denotes a vector PiPj between the relevant point, i, j = 0, 1 . . . . .  N. Equations (2.2) 
hold for all the links except the end ones. For the end links. 

F o - R j = 0 ,  - M  t+to, tx ( -Rj )=0  

F,v-t +R,v_j -R,v  =0, M,v-t +r.,v-I.,v x ( - R , v ) = 0  (2.3) 

F,v +R,v = 0  

The last equation of (2.3) is the equilibrium condition for the point IN. 
In what follows we will construct wavelike slow motions of a multilink system in which it moves along 

itself under quasi-static conditions. In other words, the velocities and accelerations are assumed to be 
sufficiently small in magnitude, so that at each instant of time the equilibrium conditions (2.2.) and 
(2.3) hold to a high degree of accuracy. We will first describe the kinematics of wavelike motions involving 
three or four moving links, then prove that these motions exist in reality and finally compute the forces 
and torques. 

Let us assume that at the starting time the multilink system is aligned along the axis with the points 
Pi at coordinates xi = ai, Yi = 0 (i = 0, 1 . . . . .  N). In that case all the friction forces Fi (i = 0, 1 . . . . .  N), 
reactive forces 1~. (i = 1, 2, . . . ,  N) and torques Mi (i = 1, . . . ,  N) are zero. 

The initial state of the system is illustrated by state a in Figs 2 and 3. In these and the following figures 
the points Pi (i = 0, 1, . . . ,  N) are labelled by digits. 

3. WAVELIKE M O T I O N  WITH T H R E E  MOVING LINKS 

First the point P0 advances along the x axis and the points Pi, i >- 2, remain fixed. The angle ct between 
the x axis and link PoPt (see state b in Fig. 2) varies monotonically from zero to a certain given value 
or0. At this initial stage, the motion involves two links PoP 1 and PIP2, which form an isosceles triangle. 
At the end of this stage the angle at the base of this triangle will be ~x0 (see state c in Fig. 2). All points 
except P1 lie on the x axis. 

At the next stage the moving links are PoPIP2 and P2P3 . The points P0 and Pi, i >~ 3; remain stationary, 

Fig. 1. 
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Fig. 2. Fig. 3. 

and the angle t~ varies monotonically from ct0 to zero. At the same time the angle I~ between link P2P3 
and the x axis varies monotonically from zero to ct0 (see state d in Fig. 2). At the end of this stage the 
system will be in state e, in which links P1P2 and P2P 3 form an isosceles triangle congruent to the triangle 
PoP1P2 in state c but with its apex pointing in the other direction. Here all points except P2 lie on the 
x axis. 

Next, the motion will involve links P1P2, P2P3 and P3P 4, and this motion, apart from a displacement 
along the x axis and a mirror reflection in the axis, will be identical with the preceding stage, namely, 
with the transition from state c to state e. As a result, the point P2 will return to the x axis, while links 
P2P3 and P3P4 forth an isosceles triangle congruent with the triangle PoPIP 2 in state c, a distance 2a 
farther to the right along the x axis. 

Continuing this process, we see that after each stage is completed all points of the system except one 
will lie on the x axis, and that one point will be the apex of an isosceles triangle with angle et0 at the 
base. The apex, together with the whole triangle, gradually moves towards the right: it will be the points 
P1, P2, P3, etc. in turn. Finally, the point Pro1 will become the apex of such a triangle, while the points 
Pi, 0 <~ i <~ N-2, and PN will lie on the x axis (see state f in Fig. 2). The apex of the triangle 
PN-2PN-1PN, namely, PN-1, will lie on the same side of the x axis as the triangle PoP1P2 in state c if N is 
even (as in Fig. 2), and on the opposite side if N is odd. 

In both cases, in the last stage of the motion the point PN advances to the right along the x axis. The 
angle tx at the base of the triangle Pm2PN-1PN varies monotonically from t~0 to zero and the multilink 
system will take up a "straight-line" stage g. 

In consequence of the entire cycle of movements, the system will advance along thex axis for a distance 
L equal to the displacement of the point P0 from state a to state c in Fig. 2. We have 

L --- 2a(l--cos or0) (3.1) 

4. W A V E L I K E  M O T I O N  W I T H  F O U R  MOVI NG LINKS 

The first stage of the motion proceeds exactly as in the previous case, and the multilink system goes 
from state a through an intermediate state b to state c in Fig. 3, which is identical with state c in 
Fig. 2. 
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At the next stage of the motion, links PoP1, P1P2, P2P3 and P3P4 are involved. The point P2 moves to 
the right along the x axis. As this happens the angle a at the base of the isosceles triangle PoPIP2 varies 
monotonically from ct0 to zero, while the angle 13 at the base of the isosceles triangle P2P3P4 
varies monotonically from zero to a0 (see state d in Fig. 3). The apex/)3 of the latter triangle lies on 
the side of the x axis apposite to that of PI. At the end of this stage, all points of the system except P3 
will lie on the x axis; P3 will be the apex of an isosceles triangle with angle a0 at the base (see state e in 
Fig. 3). 

Now links P2P3, P3P4, P4P5 and P5P6 take part in the motion. The motion is analogous to that in the 
preceding state, but displaced along the x axis and reflected in that axis. The result is an isosceles triangle 
with apex/)5 and angle ix0 at the base. 

Continuing the process, we see that the apices of the triangles at the end of each stage are the points 
with odd indices. Therefore, if N is even, the system will finally reach a state f analogous to state f in 
Fig. 2. In that case, if N/2 is odd, the apex PN_1 of the triangle PN-2PN-IPN will point in the same direction 
as the apex P1 of the triangle PoPIP 2 in the initial stage (see Fig. 3, f) ;  if N/2 is even, it will point in the 
opposite direction. In both cases, in the last stage the point PN will move to the right along the x axis 
until the entire system takes up the straight position g shown in Fig. 3. 

On the other hand, i fN is odd, one obtains situation h of Fig. 3. All points except PN-2 will lie on the 
x axis, and PN-2 will be the apex of an isosceles triangle with angle ~0 at the base. This vertex will point 
in the same direction as the apex P1 of the triangle PoPIP 2 in state c if ( N -  1)/2 is odd (this is the case 
shown in Fig. 3), and in the opposite direction if (N - 1)/2 is even. In both cases, the last stage is that 
the points PN-1 and PN will move to the right along the x-axis, until the system takes up the straight 
position i shown in Fig. 3. 

The total advance of the system along the x axis through the whole cycle is determined by the same 
relation (3.1) as in the previous case. 

5. THE QUASI-STATIC APPROACH 

As already pointed out, we are considering motions of a multilink system in a quasi-static formulation, 
with velocities and accelerations assumed to be extremely small. In this formulation all external forces 
applied to the system must almost balance out. Such external forces acting in the plane of the motion 
are friction forces. In a first approximation, therefore, we must require the friction forces to satisfy three 
equilibrium conditions (two for the forces and one for the moments). The friction forces applied to 
the moving points are readily evaluated if we know the directions of the velocities (see (2.1)). For points 
at rest, however, the friction forces are unknown, but they are bounded by inequalities. The system is 
statically indeterminate if the number of unknown components of the friction forces exceeds three. 
Consequently, the equilibrium problem need not necessarily have a unique solution. 

We will try to find the simplest distributions of the friction forces for which equilibrium is attained 
with the participation of the least possible number of stationary points adjacent to the moving points. 
Points Pi at which the friction force is not zero will be called active. We are thus looking for a solution 
of the problem of statics with the least possible number of active points adjacent to moving points. 

As follows from the description of the wavelike motions of the system, these motions consist of the 
following distinct stages. 

A. The initial stage, that is, transition from state a to state c through an intermediate state b as in 
Figs 2 and 3. 

B. The final stage, that is, transition from state e to state g in Figs 2 and 3; this stage is similar to the 
initial stage; it always takes place in motion with three moving links, and i fN is even - also in motion 
with four moving links. 

C. The final stage in motion with four moving links in the case of odd N, corresponding to transition 
from state h to state i in Fig. 3. 

D. The basic stage of motion with three moving links, characterized by state d in Fig. 2. 
E. The basic stage of motion with four moving links, characterized by state d in Fig. 3. 
We will now consider equilibrium conditions for each of stages A-E. 

6. THE INITIAL STAGE 

Consider the intermediate state b of initial stage A of the motion (Figs 2 and 3). The coordinates of 
the moving points P0 and P1 are, respectively 
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xo = 2a  - 2a  cos  cx, Y0 = 0 

x I = 2a - a cos or, Yl = a Sill Ot 

and their velocities have components 

.i: o = 2 a & s i n ~  Yo = 0  

(6.1) 

To fix our ideas, let us assume that a E (0, "rr/2), and then & > 0. The friction forces acting at the points 
P0 and Pt are defined by (2.1) in which the velocities are substituted from (6.2). We have 

F0 = -mgki, F t = - m g k ( s i n o t i + c o s a j )  (6.3) 

Henceforth, we will let i and j denote unit vectors along the coordinate axes Ox and Oy, respectively. 
The projections of t]he friction forces Fi onto the axes Ox and Oy will be denoted byX/and Y/, respectively. 

Let us assume that the active points, that is, those with non-zero friction forces, are Pi, i ~< 5. We set 
up the equilibrium equations for the system, considering these points only and taking relations (6.3) 
into account: 

)(2 + X3 + X4 + X5 = mgk(l + sin a)  

Y2 + 1"3 + )'4 + Ys = mgk cos 0t 

r2.t × F  t + a i × F  3 + 2 a i x F  4 + 3 a i × F  s = 0  

Equation (6.6) is the equation of moments about the point P2. Substituting the components (--a cos 
0t, a sin a of the vector r2,1 and the force F1 from (6.3) into this equation, we obtain 

Y3 + 21"4 + 3Ys = -mgk  (6.7) 

In order to satist~ the equilibrium conditions we have to find a solution of system (6.4), (6.5), (6.7) 
satisfying conditions (2.1): 

X2i + yi 2 ~ (mgk) 2 (6.8) 

In what follows it will be convenient to normalize all the components of the friction forces. We set 

Xi = mgk~i, Yi = mglali, i = 0,1 ..... N (6.9) 

Then the restrictions of Coulomb's law (2.1) (or (6.8)) become 

~/2 + .q/2 ~ 1, i = 0,1 ..... N (6.10) 

The equilibrium equations (6.4), (6.5) and (6.7) may now be rewritten in the form 

~2 + ~3 + ~ + ~s = 1 + sin ¢t 

~2 + ~3 + r14 + r15 = cos a (6.11) 

lq3 + 2rl4 + 3rl5 = -1 

We will first try to satisfy Eqs (5.11) with two fixed active points P2 and P3, setting ~ = "q4 = ~5 = 
"qs = 0. Then the third equation of (5.11) yields "q3 = -1. Consequently, by (6.10), ~3 = 0. The first 
equation of (6.11) then gives ~2 = 1 + sin a, which violates condition (6.10). 

Thus, two fixed active points are not sufficient, and the point P4 must also be active. Put 
~5 = xls = 0. Multiply the second equation of (6.11) by two and subtract the third equation of (5.11) 
from the result. We obtain 

2~2 + r13 = I + 2 cos a (6.12) 

(6.4) 

(6.5) 

(6.6) 

-xl = a&sina, .Yl = a&coso~ (6.2) 
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At the beginning of the initial stage we have c~ = 0, and Eq. (6.12) gives 2"q2 + ~3 = 3. It follows 
from inequalities (6.10) that "q2 = "q3 = 1. Substituting 1-13 = 1 and ~15 = 0 into the third equation, we 
obtain 'i]4 ----- --1. T h u s ,  for i = 2, 3, 4 we have I rli [ = 1 and, by (6.10), ~ = 0. Hence the first equation 
of (6.11) is not satisfied when ~5 = 0. 

Consequently, all four points/ '2 , /3 ,  P4,/'5 must be active. The two possible solutions of Eqs (6.11) 
and inequalities (6.10) are 

{2 = ~ = 0, {3 = sin (x, {s = 1 (6.13) 

r12 = - r  h = ( l+cos (x ) /2 ,  r13 =cos(x, r15 = 0  

~2 = ~s = ~ ,  ~3 + ~4 = (sin a ) / 2  (6.14) 

r l 2 = ~ + ( c o s a ) / 2 ,  rl3=cosct,  r l4=-(cos(x) /2 ,  rls---- ~ 

A direct check will show that both solutions (6.13) and (6.14) satisfy Eqs (6.11) and inequalities (6.10). 
In actual fact, for (6.13) some of the inequalities become equalities, but for (6.14) all the inequalities 
(6.10) hold "with room to spare". 

7. T H E  F I N A L  STAGES 

The final stage B, characterized by the transition from state f to state g in Figs 2 and 3, is essentially 
the initial stage in retrograde time. The points PN-1 of stage B should be identified with the points Pi 
in stage A (i = 0, 1, 2, 3, 4, 5). The sign of the angular velocity & is reversed, and the point PN of stage 
B, like P0 in stage A, advances along the x axis. As a result it turns out that the x-components of all 
three friction forces have the same signs as before, but the y-components change sign. We have the 
following correspondence of forces for stages B and A 

XN_i=Xi, YN_i=-Yi, i = 0 , 1 , 2 , 3 , 4 , 5  (7.1) 

The proof of the previous section that four fixed points must be active, and the derivation of the 
solution (6.13), (6.14), remain valid, provided one takes the notation (7.1) and (6.9) into account. 

We now consider the final stage C, which takes place in the case of four moving points when (N-l) /2 
is even (situation h in Fig. 3). At this stage (see Fig. 4) the points Pi, i <~ N-3, remain stationary, while 
PN-1 and PN move along the x axis. We place the origin at the point PN-3, direct the x axis along the link 
PN-.4PN-3 and write down the coordinates and velocities of the moving points 

XN_ 2 = a c o s o t ,  YN-2 =asin(x, XN_ I =2acosot  

Y~¢-I =0,  x N =2acos (x+a ,  YN = 0  

kN_ 2 = -a6tsin 0~, YA,-2 = a6~cos (X (7.2) 

-~- t  = - ~  =-2adtsin(x, YN-I =Y~ --0 

where cc is the angle at the base of the isosceles triangle PN_3PN_2PN_I, d < O. 
Using Eq (2.1) and relations (7.2), we proceed as was done for (6.3) to evaluate the friction forces 

acting on the moving points 

F~_ 2 = mgk(-sin ai  + cos ctj), Fro_ I = Fro = -mgki (7.3) 

- 'O O O O - - a - - O  O 
N-6 N-5 N-4 N-3 N-I N 

Fig. 4. 
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The equilibrium equations considering the points from PN-6 to PN, are 

XN_ 6 + XN_ s + XH_ 4 + XH_ 3 = mgk(2 + sin ¢x) 

Ytv-~ + Yt~-s + Y~-4 + YN-3 = -mgkcosoc (7.4) 

-3ai x F~_ 6 - 2ai x F~,_ s - ai x FN_ 4 + rN_3.~v_ 2 x FN_ 2 + 

+rN_3.,V_ I X FN_ ! + rN_3.,V X F;v = 0 

In the equation of moments (7.4) about the point PN-3 we substitute the friction forces (7.3) and the 
coordinates of the points PN-2, PN-1, PN from (7.2). As a consequence, taking the normalization (6.9) 
into account, the system of equilibrium equations (7.4) becomes 

~ ' - 6  + ~Jv-5 + ~t~-4 + ~N-3 = 2 + sin 0C 

tIN_ 6 "4-I]N_5 "l" T~N_ 4 "F tIN_3 ----"- COS(3t (7.5) 

3tiN_6 + 2Tlt~_s "1- T~N_ 4 " ~  1 

Let us assume that, in all, there are three active fixed points, PN-3, PN-4 and Ply-5, so that 
[~v-6 = "qN-6 = 0. Multiply the second equation of (7.5) by two and subtract the third equation of (7.5) 
from the result. This gives 

~N-4.4- 21"l/v_ 3 = --2 COSOt - l (7.6) 

If Ct ---- 0, it follows from (7.6) that "qN-4 + 2"qN-3 = -3, but since I "qi I ~< 1 for all i, it follows that 
"qN-4 = "qN-3 = -1. By (6.10), we have ~N-4 = ~N-3 = 0. Then the first equation of (7.5), given that 
~lv-6 = 0, ct = 0, becomes ~N-5 = 2, and inequality (6.10) is not satisfied for i = N - 5. Consequently, 
three active fixed points are insufficient, and the point PN-6 is also active. 

One possible solution of Eqs (7.5), also satisfying inequalities (6.10) (with "room to spare"), is the 
following 

~N_6=5/6, ~ s _ s = ( 4 + s i n o 0 / 6 ,  ~N_4=(5sincz)/6 

~,v_3=l~, 13N_6=~, 1]~,_S=(COS00/2 

qN-4 =--COS0C, ~JV-3 =--(2+3COS00/6 

8. T H E  BASIC STAGE FOR T H R E E  M O V I N G  LINKS 

This stage (stage D in Section 6) is characterized by state d in Fig. 2. The general case of this stage is 
illustrated in Fig. 5, where the moving links are PiPi÷l, Pi÷lPi+2 and Pi÷2Pi+3. We place the origin at 
the stationary point Pi, direct the x axis along the segment PiPi+3 and write down the coordinates of 
the moving points .F'/+ 1 and Pi+2 

xi+ I =acosct ,  Yi+l =asincx (8.1) 

xi+ 2 =/ -acos l~ ,  Yi+2 =-asin[3 

where cx and 13 are 1:he angles between the x axis and the moving links Piei+ 1 and Pi+2Pi+3, measured 
in opposite directions (see Fig. 5), and l is the distance P~i+3, which remains unchanged throughout 
this stage. 

Differentiating relations (8.1), we determine the velocities of the points Pi+l and Pi÷2 

ki+ I =-a&sinct ,  .vi÷l = a&cosa  (8.2) 

-ri+2 = al~sin[3, Yi+2 ---- -al~cosl~ 

i+1 

° ° 
i - I  3 i+4  

i+2  
Fig. 5. 
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Throughout this stage we have ~ < 0, 13 > 0. The friction forces acting on the moving points Pi+l and 
Pi+2 are determined using relations (2.1) and formulae (8.2). We obtain 

F/+ I = mgk(- sin a i  + cos aj)  (8.3) 

Fi+ 2 = mgk(- sin [3i + cos 13j) 

We set up the equilibrium equations, assuming that there are just two active stationary points on 
each side of the moving links, that is, the active points are Py, i - 1 ~< j ~< i + 4 (see Fig. 5). Using 
Eqs (8.3), we have 

Xi_ 1 + X i + Xi+ 3 + X/+ 4 = mgk(sin a + sin 13) 

Y/-I + Y/+ Y/+3 + Y/+4 = -mgk(costz + cosl3) (8.4) 

-aY/ - I  +/Y/+3 + (l + a)Y/+ 4 = 

cos(x sinai_ ,ll-acosl3 - a s i n [ ~  
= - m g k a - s i n a  eosa  I mgKl-sinl3 cosl3 / 

The last equation of (8.4) is the equation of moments about the point Pi, obtained using (8.1) and 
(8.3). After simplifying and changing to the dimensionless variables (6.9), Eqs (8.4) become 

~i-I  + ~i + ~i+3 + ~i+4 = sin a + sin 13 (8.5) 

~i-I + "l~i + ~i+3 + ~i+4 = --(COS O~ + COS~) 

-a~ i_ l  + 11"1i+3 + (l + a)1~i+4 = -/cos[~ 

System (8.5) has a solution 

~i-I  = ~i+4 = rl i-I  -- "Oi-4 = 0 (8.6) 

~ i = s i n a ,  ~i+3=sin~, ~ i = - c o s o t ,  "qi÷3=-cos[~ 

which also satisfies inequalities (6.10). This solution is interesting because it involves only two active 
stationary points Pi and Pi+3, which are the ends of the moving links. 

9. T H E  BASIC STAGE F O R  F O U R  M O V I N G  L I N K S  

This stage (stage E in Section 6) is characterized by state d in Fig. 3. The general case of this stage is 
illustrated in Fig. 6, where the moving links are PiPi+l, Pi+lei+2, Pi+2el+3 and Pi+3Pi÷4. We place the 
origin at the stationary point Pi and direct the x axis along the segment Piei+4 . Let ot and 13 denote the 
angles at the bases of the isosceles triangles Piei+lei+2 and Pi÷2Pi+3Pi+4, respectively. The coordinates 
of the moving points are 

xi+ j = a c o s a ,  Yi+l = a s i n a ,  xi+ 2 = 2 a c o s a  (9.1) 

yi+2 =O, xi+3 =a(2cosa +cosf3), yi+3 =-asin[3 

and their velocities are 

ki+ I = -a6 t s ina ,  :~i+~ =a6teosa ,  ki+ 2 =-2a6~sinot 

Yi+2 = 0, ki+ 3 =-a(26~sina+~sinl~), J:i+3 =-al~c°s[3 

(9.2) 

Throughout the motion, the distance Piei+4 remains unchanged and is equal to its value at the 
beginning and at the end of the step, when one of the angles a or 13 is zero and the other has its maximum 
value c~ 0. We therefore have 

cosa + cosl~ = 1 + cosczo (9.3) 
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Differentiat ing thi,; identity, we obtain 

~tsinot+ ~lsinl~ = 0 

In view of  (9.4), we deduce from (9.2) that  

"~i+3 = a[3 sin [3 

(9.4) 

(9.5) 

Taking into account that c~ < 0, [~ > 0, we use relations (2.1), (9.2) and (9.5) to determine the friction 
forces acting on the moving points 

Fi+l = mgk(- sin a i  + cos ctj), Fi+ 2 = -mgki (9.6) 

Fi+ 3 = m g k ( -  sin 13i + cosl3j) 

We set up the equilibrium equations of the multilink system, assuming that on each side of  the moving 
links there are just two stationary points, that  is, the active points are Pj, i - 1  ~< j ~< i + 5 (see Fig. 6). 
Taking Eqs (9.6) into account, we obtain 

Xi_ I + X i + Xi+ 4 + Xi+ s = mgk(1 + sintx +sin[3) 

Y,'-i + Y/+ Y/+4 + Yi+5 = -mgk(cos a + cos [3) (9.7) 

- a  Y/_ I + 2a(cos ot + cos [3) Y/+ 4 + a(2 cos 0t + 2 cos 13 + 1)Y/+5 = 

IIC°set sintx _mgka2C°Sa+C°Sl~  -sinl3 
-mgka l- sin ¢t cos a - sin 13 cos 13 

The last equat ion of (9.7) is the equation of moments  about the point Pi, derived using (9.1) and (9.6). 
We simplify Eqs (9.7), using identity (9.3) and changing to dimensionless variables (6.9). We obtain 

l~i-I +~,i +~i+4 +~i+5 = 1 + s intx+ sinl~ 

lqi_l + rli + rli+4 + ~i+5 = - ( cos a  + cos 13) (9.8) 

--rli_l +2(1 + cos a0)rli+ 4 + ( 3 +  2cosa0)rli+ 5 = -2  cosl~(1 + c o s a  0) 

As in Section 8, we will first try to limit ourselves to two active stationary points and put ~i-1 = "qi-1 
= ~+5 = "qi+5 = 0. It then follows from the third equation of (9.8) that "qi+4 = -cos [3, and it then follows 
from the second equation of (9.8) that  "qi = -cos c~. It now follows from inequality (6.10) that 
I~i I ~< sino~, I ~i+41 ~< sin [3. These inequalities contradict the first equation of (9.8) for ~i-1 ----" ~ + 5  = 0. 
ThUS, twO active stationary points are insufficient. 

It turns out that if at least one of the points/ ' ,+1 or Pi+5 is also active, a solution exists. Set 

~ i=s in0t ,  r l i = - c o s ~ ,  ~i+4=sin[3, "qi+4=-cos[3 

~i-I = lqi+5 = 0 (9.9) 

and, in addition, 

either ~/-1 = 1, ~+5 = 0 o r  ~i-1 ~- 0,  ~'+5 = 1 (9.10) 

It can be readily verified that both solutions (9.9) and (9.10) satisfy Eqs (9.8) and inequalities (6.10). 
Thus, in this case there must be three active stationary points: Pi, Pi+4 and either Pi-1 or P;+5. 

10. D E T E R M I N A T I O N  T H E  T O R Q U E S  

At any stage of the wavelike motion with three or four moving links, there is a certain finite number  
of  active points. Lel: Pq be the outermost  active point on the left and Pr the outermost  one on the right, 
q < r. We have F i :~: 0 for q ~< i ~< r, F i = 0 for i < q and i > r. At the outermost  active points we have 

Rq = 0, Mq = 0; R,.~ = 0, M,.I = 0 (10ol) 
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Conditions (10.1) mean that there is no force acting on the point Pq and the link PqPq_l from the left, 
and none acting on Pr and P,-1Pr from the right. 

In Section 2, the forces R,- are defined for 1 ~< i ~< N a n d  the torques Mi for 1 ~< i ~< N- l ;  this implies 
that relations (10.1) are meaningful only for 0 < q < r < N-1. We extend these definitions to i = 0, N, 
N +  1, in accordance with their meanings (see Section 2), as follows: 

Ro = RN+I = 0 ,  Mo = M N  = MN+ I = 0 

Then, as is easily seen, Eqs (10.1) and the subsequent formulae of Section 10 will hold for all q, r such 
that 0 ~< q < r < ~ N .  

If the multilink system is in equilibrium or in quasi-static motion, each pair of conditions in (10.1) 
implies the other pair. Indeed, by (2.2), we have 

ar+! =Fr  +Rr  =Fr  +Fr_ I +Rr_ I . . . . .  ~ F i+Rq  (10.2) 
i=q 

In the equilibrium state, all the friction forces on active points are balanced out; hence it follows from 
(10.2) that the equalities Rq = 0 and Rr+l = 0 are equivalent to each other. 

Let us compute the torque applied at the i-th joint. Applying Eqs (2.2), we obtain a chain of relations 

Mi =Mi_  ! + ri.i_l × (Fi_I +Ri_l)mri.i_l xFi_ I +Mi_ 2 "F ri_l.i_ 2 x(Fi_ 2 +Ri_2)+  

"l-~'.i_ I x(Fi_ 2 +Ri_2)=  ri,i_l xFi_I + ri,i_ 2 x F i _  2 +Mi_ 2 +It'./_ 2 ×Ri -  2 -- 

i - I  

... Y. ri, j x Fj + Mq + ri. q x Rq (10.3) 
J=q 

Since Rq = 0, Mq = 0, we derive from (10.3) a formula for the torque at the ith joint 

i - I  

M i =  ~'. r / . jxFj ,  q<~i<~r+l  (10.4) 
j=q 

Putting i = r + 1 in (10.4), and allowing for the fact that the total torque of the friction forces applied 
to the system at all active points is zero, we obtain Mr+l = 0. 

Thus, if one pair of conditions (10.1) is satisfied, so is the other. 
Formula (10.4) enables us to estimate the torque that must be developed by motors mounted at the 

joints of the multilink system. Using the solutions for the friction forces obtained in Sections 6-9, we 
use formula (10.4) to evaluate the torques at the joints for all active points at stages A - E  of the motion. 
It turns out that in all cases, and for all values of the angle ct 0, 

IM,] ~< 2mgka (10.5) 

The torques M i at the joints, as calculated in this section, guarantee equilibrium of the system in every 
position. In order to create the desired quasi-static motion according to the scheme of Sections 3 and 
4, one has to specify the torques in the form 

M~ = M i + AM i (10.6) 

The torques Mi were determined above, and the additional small torques AMi must be formed in accordance 
with the feedback principle. To that end, the desired law of motion should first be stipulated, e.g. by specifying the 

0 0 generalized coordinates of the system as functions of time: qk = qk(t) (k = 1, . . . ,  N + 2). The functions qk(t) 
should be such that, as t varies from zero to T, the system successively passes through the states described in Sections 
3 and 4. Throughout, the velocities and accelerations must be sufficiently small, so that the inertial forces produced 
are much smaller than the friction forces. This condition is expressed by the inequalities 

((x)2 a,~gk, iS~<Cgk 

The additional torques AM/should be specified, e.g. as feedback 

N+2 
0 * • AM i = ~ {Wik[qk-q~(t)l+W~lqk-il°(t)l} 

k=l 
(10.7) 
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where the matrices Wi~ and W~, must be chosen so that any motion thus realized is stable. The generalized 
coordinates and velc~:ities qg, qk should be measured by sensors. It seems that the desired motion may be followed 
in this way to within a given accuracy. However, this problem requires further investigation. 

We merely remark that the additional torques A M  i c a n  be made very small compared with M i by a proper choice 
of the slow quasi-static motion q°(t). Formulae (10.4) and estimates (10.5), therefore, determine the principal part 
of the required torques developed by the motors. 

11. D I S C U S S I O N  O F  T H E  R E S U L T S  

As  shown in Sect ions  6 and 7, at  the  ini t ial  and  final s tages A - C  of  wavel ike  m o t i o n  the re  mus t  be at 
least  four  active s ta t ionary  points;  at s tage D the re  must  be at least  two, and  at  s tage E, at  least  three.  
H e n c e  wavel ike  m o t i o n  of  a mul t i l ink  system with th ree  moving links is feas ible  in prac t ice  if it has at 
least  six po in ts  o r  five links (N  t> 5). To p r o d u c e  wavel ike  mo t ion  with four  moving links, the  system 
mus t  have at  least  seven poin ts  (six links, N >t 6). Mo t ion  with th ree  moving links is s imple r  but,  as 
shown below,  reqt t i res  that  the  angles  at which the links are  incl ined to  the  x axis be  large.  

Let us estimate the maximum angles of inclination of the links to thex axis in motion with three and with four 
moving links, for the same total displacement L of the system. Since formula (3.1) holds for both types of motion, 
the value of ct 0 for the same L will be the same in both types of motion. The angle at which the links are inclined 
to the x axis in the case of four moving links will not exceed %. 

Let us determine the maximum angle of inclination of the links to the x axis in the case of motion with three 
moving links. It can be seen from Fig. 5 that the largest angle of inclination to the x axis is that of the middle link 
Pi+lPi÷2 of the three moving ones. Letting 3' denote the angle between this link and the x axis, we have (see Fig. 
5). 

a(cosot + cos13 + cosy) -- 1 = a + 2a cos ot 0 (11.1) 

The second equahty of (11.1) corresponds to the case in which ct = 0 or 13 = 0 in Fig. 5. The largest inclination 
of the link Pi+lPi+2 corresponds to the least value of cos 3' or, by (11.1), the maximum value of the sum cos a + 
cos 13. Using Eqs (8.1), we can write down the condition for the length of the link Pi+lPi+2 to be equal to a. We 
have 

[l - a (cosa  + cos13)] ~ + a 2 (sin a + sin 13) 2 = a 2 (11.2) 

After simplifying, we., obtain from (11.2) 

l (cosa  + cos 13) - a cos(a  - 13) = (l 2 + a 2)(2a) -l (11.3) 

We now determine the conditional extremum of cos ct + cos B, given (11.3). We construct the Lagrange function 

G = cosa  + cos13 + k/(cosa + cos 13)- 2~a cos(a - 13) (11.4) 

where h is a Lagranl~;e multiplier, and equate the partial derivatives OG/0~ and 0G/O13 to zero. We have 

- ( I  + ~d)s in  a + ) ,a s in  (ct - 13) = 0 

- ( !  + M)sin 13- 7~a sin (a  - 13) = 0 
(11.5) 

Adding these equations together, we obtain 

(sin a + sin 13)(1 + M) = 0 (11.6) 

Since the angles ct arid 13 are in the interval [0, %], where ct0 < ~r/2, and they cannot both vanish, it follows from 
(11.6) that 1 + M = 0. We then deduce from (11.5) that a = 13. Substituting this condition into (11.3) and replacing 
I by its value according to (11.1), we obtain 

cos~ = cos13 = (I + cosCt 0 +cos 2 0t0)(1 + 2 cos0t 0 )-I (11.7) 

It can be easily verified that this extremum corresponds to the desired maximum value of cos ct + cos 13 and 
lies in the interval (O, a0). 
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The corresponding minimum value of cos 3' is found from (11.1) 

cost  = (2eosoc 0 +2cos 2 oc 0 - I)(I + 2cosct0) -l (11.8) 

This following conclusions may be drawn from formulae (11.7) and (11.8). It is always true that cos 3' < cos ~0, 
that is, the angle of inclination in the case of three moving links is larger than in the case of four moving links. If 
% > 69 °, that is, cos % < (31/2-1)/2, than cos 3' < 0, that is, the angle of inclination of the link Pi+lPi+2 exceeds 
~r/2. Also if a0 ~ ~2,  then 3' ~ ~r. Thus, in the case of three moving links the multilink system is more strongly 
bent, especially at large values of %. 

If  the number  of  links N is sufficiently large, there may be several waves of  the above types propagating 
along the system at the same time. W h e n  the first o f  the waves with three or  four  moving links has 
advanced far enough  along system, a new wave of  the same or  of  another  type may begin at the end of  
the system (i = 0, 1, 2), advancing along the system after the first. Thus,  the average velocity of  
displacement  o f  the system as a whole may be increased several fold. 

To conclude,  we note  that, simple the modes  o f  mot ion of  a multilink system described previously 
[8, 9], where  implementa t ion  of  the fast phases o f  mot ion  required torques considerably exceeding the 
moments  m g k a  of  the friction forces, the condit ions imposed on the torques here  are more  moderate .  
They  are expressed by inequality (10.5). 
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